Paper

Noise Statistics Oblivious GARD For Robust Regression With Sparse Outliers

Linear regression models contaminated by Gaussian noise (inlier) and possibly unbounded sparse outliers are common in many signal processing applications. Sparse recovery inspired robust regression (SRIRR) techniques are shown to deliver high quality estimation performance in such regression models. Unfortunately, most SRIRR techniques assume \textit{a priori} knowledge of noise statistics like inlier noise variance or outlier statistics like number of outliers. Both inlier and outlier noise statistics are rarely known \textit{a priori} and this limits the efficient operation of many SRIRR algorithms. This article proposes a novel noise statistics oblivious algorithm called residual ratio thresholding GARD (RRT-GARD) for robust regression in the presence of sparse outliers. RRT-GARD is developed by modifying the recently proposed noise statistics dependent greedy algorithm for robust de-noising (GARD). Both finite sample and asymptotic analytical results indicate that RRT-GARD performs nearly similar to GARD with \textit{a priori} knowledge of noise statistics. Numerical simulations in real and synthetic data sets also point to the highly competitive performance of RRT-GARD.

Results in Papers With Code
(↓ scroll down to see all results)