Neural Trojans

3 Oct 2017  ·  Yuntao Liu, Yang Xie, Ankur Srivastava ·

While neural networks demonstrate stronger capabilities in pattern recognition nowadays, they are also becoming larger and deeper. As a result, the effort needed to train a network also increases dramatically. In many cases, it is more practical to use a neural network intellectual property (IP) that an IP vendor has already trained. As we do not know about the training process, there can be security threats in the neural IP: the IP vendor (attacker) may embed hidden malicious functionality, i.e. neural Trojans, into the neural IP. We show that this is an effective attack and provide three mitigation techniques: input anomaly detection, re-training, and input preprocessing. All the techniques are proven effective. The input anomaly detection approach is able to detect 99.8% of Trojan triggers although with 12.2% false positive. The re-training approach is able to prevent 94.1% of Trojan triggers from triggering the Trojan although it requires that the neural IP be reconfigurable. In the input preprocessing approach, 90.2% of Trojan triggers are rendered ineffective and no assumption about the neural IP is needed.

PDF Abstract
No code implementations yet. Submit your code now

Categories


Cryptography and Security

Datasets