Neural Co-Processors for Restoring Brain Function: Results from a Cortical Model of Grasping

19 Oct 2022  ·  Matthew J. Bryan, Linxing Preston Jiang, Rajesh P N Rao ·

Objective: A major challenge in designing closed-loop brain-computer interfaces is finding optimal stimulation patterns as a function of ongoing neural activity for different subjects and objectives. Approach: To achieve goal-directed closed-loop neurostimulation, we propose "neural co-processors" which use artificial neural networks and deep learning to learn optimal closed-loop stimulation policies, shaping neural activity and bridging injured neural circuits for targeted repair and rehabilitation. The co-processor adapts the stimulation policy as the biological circuit itself adapts to the stimulation, achieving a form of brain-device co-adaptation. Here we use simulations to lay the groundwork for future in vivo tests of neural co-processors. We leverage a cortical model of grasping, to which we applied various forms of simulated lesions, allowing us to develop the critical learning algorithms and study adaptations to non-stationarity. Main results: Our simulations show the ability of a neural co-processor to learn a stimulation policy using a supervised learning approach, and to adapt that policy as the underlying brain and sensors change. Our co-processor successfully co-adapted with the simulated brain to accomplish the reach-and-grasp task after a variety of lesions were applied, achieving recovery towards healthy function. Significance: Our results provide the first proof-of-concept demonstration of a co-processor for adaptive activity-dependent closed-loop neurostimulation, optimizing for a rehabilitation goal. While a gap remains between simulations and applications, our results provide insights on how co-processors may be developed for learning complex adaptive stimulation policies for a variety of neural rehabilitation and neuroprosthetic applications.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods