Paper

Negative-Unlabeled Tensor Factorization for Location Category Inference from Highly Inaccurate Mobility Data

Identifying significant location categories visited by mobile users is the key to a variety of applications. This is an extremely challenging task due to the possible deviation between the estimated location coordinate and the actual location, which could be on the order of kilometers. To estimate the actual location category more precisely, we propose a novel tensor factorization framework, through several key observations including the intrinsic correlations between users, to infer the most likely location categories within the location uncertainty circle. In addition, the proposed algorithm can also predict where users are even in the absence of location information. In order to efficiently solve the proposed framework, we propose a parameter-free and scalable optimization algorithm by effectively exploring the sparse and low-rank structure of the tensor. Our empirical studies show that the proposed algorithm is both efficient and effective: it can solve problems with millions of users and billions of location updates, and also provides superior prediction accuracies on real-world location updates and check-in data sets.

Results in Papers With Code
(↓ scroll down to see all results)