Nearly-tight Approximation Guarantees for the Improving Multi-Armed Bandits Problem

1 Apr 2024  ·  Avrim Blum, Kavya Ravichandran ·

We give nearly-tight upper and lower bounds for the improving multi-armed bandits problem. An instance of this problem has $k$ arms, each of whose reward function is a concave and increasing function of the number of times that arm has been pulled so far. We show that for any randomized online algorithm, there exists an instance on which it must suffer at least an $\Omega(\sqrt{k})$ approximation factor relative to the optimal reward. We then provide a randomized online algorithm that guarantees an $O(\sqrt{k})$ approximation factor, if it is told the maximum reward achievable by the optimal arm in advance. We then show how to remove this assumption at the cost of an extra $O(\log k)$ approximation factor, achieving an overall $O(\sqrt{k} \log k)$ approximation relative to optimal.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here