Musical Voice Separation as Link Prediction: Modeling a Musical Perception Task as a Multi-Trajectory Tracking Problem

28 Apr 2023  ·  Emmanouil Karystinaios, Francesco Foscarin, Gerhard Widmer ·

This paper targets the perceptual task of separating the different interacting voices, i.e., monophonic melodic streams, in a polyphonic musical piece. We target symbolic music, where notes are explicitly encoded, and model this task as a Multi-Trajectory Tracking (MTT) problem from discrete observations, i.e., notes in a pitch-time space. Our approach builds a graph from a musical piece, by creating one node for every note, and separates the melodic trajectories by predicting a link between two notes if they are consecutive in the same voice/stream. This kind of local, greedy prediction is made possible by node embeddings created by a heterogeneous graph neural network that can capture inter- and intra-trajectory information. Furthermore, we propose a new regularization loss that encourages the output to respect the MTT premise of at most one incoming and one outgoing link for every node, favouring monophonic (voice) trajectories; this loss function might also be useful in other general MTT scenarios. Our approach does not use domain-specific heuristics, is scalable to longer sequences and a higher number of voices, and can handle complex cases such as voice inversions and overlaps. We reach new state-of-the-art results for the voice separation task in classical music of different styles.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods