Multidimensional Scaling for Gene Sequence Data with Autoencoders

19 Apr 2021  ·  Pulasthi Wickramasinghe, Geoffrey Fox ·

Multidimensional scaling of gene sequence data has long played a vital role in analysing gene sequence data to identify clusters and patterns. However the computation complexities and memory requirements of state-of-the-art dimensional scaling algorithms make it infeasible to scale to large datasets. In this paper we present an autoencoder-based dimensional reduction model which can easily scale to datasets containing millions of gene sequences, while attaining results comparable to state-of-the-art MDS algorithms with minimal resource requirements. The model also supports out-of-sample data points with a 99.5%+ accuracy based on our experiments. The proposed model is evaluated against DAMDS with a real world fungi gene sequence dataset. The presented results showcase the effectiveness of the autoencoder-based dimension reduction model and its advantages.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here