Multi-view Graph Structural Representation Learning via Graph Coarsening

18 Apr 2024  ·  Xiaorui Qi, Qijie Bai, Yanlong Wen, Haiwei Zhang, Xiaojie Yuan ·

Graph Transformers (GTs) have made remarkable achievements in graph-level tasks. However, most existing works regard graph structures as a form of guidance or bias for enhancing node representations, which focuses on node-central perspectives and lacks explicit representations of edges and structures. One natural question is, can we treat graph structures node-like as a whole to learn high-level features? Through experimental analysis, we explore the feasibility of this assumption. Based on our findings, we propose a novel multi-view graph structural representation learning model via graph coarsening (MSLgo) on GT architecture for graph classification. Specifically, we build three unique views, original, coarsening, and conversion, to learn a thorough structural representation. We compress loops and cliques via hierarchical heuristic graph coarsening and restrict them with well-designed constraints, which builds the coarsening view to learn high-level interactions between structures. We also introduce line graphs for edge embeddings and switch to edge-central perspective to construct the conversion view. Experiments on six real-world datasets demonstrate the improvements of MSLgo over 14 baselines from various architectures.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here