Multi-stage Attack Detection and Prediction Using Graph Neural Networks: An IoT Feasibility Study

With the ever-increasing reliance on digital networks for various aspects of modern life, ensuring their security has become a critical challenge. Intrusion Detection Systems play a crucial role in ensuring network security, actively identifying and mitigating malicious behaviours. However, the relentless advancement of cyber-threats has rendered traditional/classical approaches insufficient in addressing the sophistication and complexity of attacks. This paper proposes a novel 3-stage intrusion detection system inspired by a simplified version of the Lockheed Martin cyber kill chain to detect advanced multi-step attacks. The proposed approach consists of three models, each responsible for detecting a group of attacks with common characteristics. The detection outcome of the first two stages is used to conduct a feasibility study on the possibility of predicting attacks in the third stage. Using the ToN IoT dataset, we achieved an average of 94% F1-Score among different stages, outperforming the benchmark approaches based on Random-forest model. Finally, we comment on the feasibility of this approach to be integrated in a real-world system and propose various possible future work.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here