Motion Planning by Reinforcement Learning for an Unmanned Aerial Vehicle in Virtual Open Space with Static Obstacles

24 Sep 2020  ·  Sanghyun Kim, Jongmin Park, Jae-Kwan Yun, Jiwon Seo ·

In this study, we applied reinforcement learning based on the proximal policy optimization algorithm to perform motion planning for an unmanned aerial vehicle (UAV) in an open space with static obstacles. The application of reinforcement learning through a real UAV has several limitations such as time and cost; thus, we used the Gazebo simulator to train a virtual quadrotor UAV in a virtual environment. As the reinforcement learning progressed, the mean reward and goal rate of the model were increased. Furthermore, the test of the trained model shows that the UAV reaches the goal with an 81% goal rate using the simple reward function suggested in this work.

PDF Abstract

Datasets


Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here