Modelling Student Behavior using Granular Large Scale Action Data from a MOOC

16 Aug 2016  ·  Steven Tang, Joshua C. Peterson, Zachary A. Pardos ·

Digital learning environments generate a precise record of the actions learners take as they interact with learning materials and complete exercises towards comprehension. With this high quantity of sequential data comes the potential to apply time series models to learn about underlying behavioral patterns and trends that characterize successful learning based on the granular record of student actions. There exist several methods for looking at longitudinal, sequential data like those recorded from learning environments. In the field of language modelling, traditional n-gram techniques and modern recurrent neural network (RNN) approaches have been applied to algorithmically find structure in language and predict the next word given the previous words in the sentence or paragraph as input. In this paper, we draw an analogy to this work by treating student sequences of resource views and interactions in a MOOC as the inputs and predicting students' next interaction as outputs. In this study, we train only on students who received a certificate of completion. In doing so, the model could potentially be used for recommendation of sequences eventually leading to success, as opposed to perpetuating unproductive behavior. Given that the MOOC used in our study had over 3,500 unique resources, predicting the exact resource that a student will interact with next might appear to be a difficult classification problem. We find that simply following the syllabus (built-in structure of the course) gives on average 23% accuracy in making this prediction, followed by the n-gram method with 70.4%, and RNN based methods with 72.2%. This research lays the ground work for recommendation in a MOOC and other digital learning environments where high volumes of sequential data exist.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here