Millimeter Wave Wireless Communication Assisted Three-Dimensional Simultaneous Localization and Mapping

5 Mar 2023  ·  Zhiyu Mou, Feifei Gao ·

In this paper, we study the three-dimensional (3D) simultaneous localization and mapping (SLAM) problem in complex outdoor and indoor environments based only on millimeter-wave (mmWave) wireless communication signals. Firstly, we propose a deep-learning based mapping (DLM) algorithm that can leverage the reflections point on the first-order none line-of-sight (NLOS) communications links (CLs) to build the 3D point cloud map of the environment. Specifically, we design a classification neural network to identify the first-order NLOS CL and theoretically calculate the geometric coordinates of the reflection points on it. Secondly, we take the advantage of both the inertial measurement unit and the beam-squint assisted localization method to realize real-time and precise localizations. Then, combining the DLM and the adopted localization algorithm, we develop the communication-based SLAM (C-SLAM) framework that can carry out SLAM without any prior knowledge of the environment. Moreover, extensive simulations of both complex outdoor and indoor environments validate the effectiveness of our approach.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods