Mathematical artificial intelligence design of mutation-proof COVID-19 monoclonal antibodies

20 Apr 2022  ·  Jiahui Chen, Guo-Wei Wei ·

Emerging severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have compromised existing vaccines and posed a grand challenge to coronavirus disease 2019 (COVID-19) prevention, control, and global economic recovery. For COVID-19 patients, one of the most effective COVID-19 medications is monoclonal antibody (mAb) therapies. The United States Food and Drug Administration (U.S. FDA) has given the emergency use authorization (EUA) to a few mAbs, including those from Regeneron, Eli Elly, etc. However, they are also undermined by SARS-CoV-2 mutations. It is imperative to develop effective mutation-proof mAbs for treating COVID-19 patients infected by all emerging variants and/or the original SARS-CoV-2. We carry out a deep mutational scanning to present the blueprint of such mAbs using algebraic topology and artificial intelligence (AI). To reduce the risk of clinical trial-related failure, we select five mAbs either with FDA EUA or in clinical trials as our starting point. We demonstrate that topological AI-designed mAbs are effective to variants of concerns and variants of interest designated by the World Health Organization (WHO), as well as the original SARS-CoV-2. Our topological AI methodologies have been validated by tens of thousands of deep mutational data and their predictions have been confirmed by results from tens of experimental laboratories and population-level statistics of genome isolates from hundreds of thousands of patients.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here