Markov Chain Truncation for Doubly-Intractable Inference

15 Oct 2016  ·  Colin Wei, Iain Murray ·

Computing partition functions, the normalizing constants of probability distributions, is often hard. Variants of importance sampling give unbiased estimates of a normalizer Z, however, unbiased estimates of the reciprocal 1/Z are harder to obtain. Unbiased estimates of 1/Z allow Markov chain Monte Carlo sampling of "doubly-intractable" distributions, such as the parameter posterior for Markov Random Fields or Exponential Random Graphs. We demonstrate how to construct unbiased estimates for 1/Z given access to black-box importance sampling estimators for Z. We adapt recent work on random series truncation and Markov chain coupling, producing estimators with lower variance and a higher percentage of positive estimates than before. Our debiasing algorithms are simple to implement, and have some theoretical and empirical advantages over existing methods.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here