Magnetic-Guided Flexible Origami Robot toward Long-Term Phototherapy of H. pylori in the Stomach

12 May 2024  ·  Sishen Yuan, Baijia Liang, Po Wa Wong, Mingjing Xu, Chi Hsuan Li, Zhen Li, Hongliang Ren ·

Helicobacter pylori, a pervasive bacterial infection associated with gastrointestinal disorders such as gastritis, peptic ulcer disease, and gastric cancer, impacts approximately 50% of the global population. The efficacy of standard clinical eradication therapies is diminishing due to the rise of antibiotic-resistant strains, necessitating alternative treatment strategies. Photodynamic therapy (PDT) emerges as a promising prospect in this context. This study presents the development and implementation of a magnetically-guided origami robot, incorporating flexible printed circuit units for sustained and stable phototherapy of Helicobacter pylori. Each integrated unit is equipped with wireless charging capabilities, producing an optimal power output that can concurrently illuminate up to 15 LEDs at their maximum intensity. Crucially, these units can be remotely manipulated via a magnetic field, facilitating both translational and rotational movements. We propose an open-loop manual control sequence that allows the formation of a stable, compliant triangular structure through the interaction of internal magnets. This adaptable configuration is uniquely designed to withstand the dynamic squeezing environment prevalent in real-world gastric applications. The research herein represents a significant stride in leveraging technology for innovative medical solutions, particularly in the management of antibiotic-resistant Helicobacter pylori infections.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here