Machine learning phases of matter

5 May 2016  ·  Juan Carrasquilla, Roger G. Melko ·

Neural networks can be used to identify phases and phase transitions in condensed matter systems via supervised machine learning. Readily programmable through modern software libraries, we show that a standard feed-forward neural network can be trained to detect multiple types of order parameter directly from raw state configurations sampled with Monte Carlo. In addition, they can detect highly non-trivial states such as Coulomb phases, and if modified to a convolutional neural network, topological phases with no conventional order parameter. We show that this classification occurs within the neural network without knowledge of the Hamiltonian or even the general locality of interactions. These results demonstrate the power of machine learning as a basic research tool in the field of condensed matter and statistical physics.

PDF Abstract