Machine Learning Integrated with Model Predictive Control for Imitative Optimal Control of Compression Ignition Engines

The high thermal efficiency and reliability of the compression-ignition engine makes it the first choice for many applications. For this to continue, a reduction of the pollutant emissions is needed. One solution is the use of machine learning (ML) and model predictive control (MPC) to minimize emissions and fuel consumption, without adding substantial computational cost to the engine controller. ML is developed in this paper for both modeling engine performance and emissions and for imitating the behaviour of an Linear Parameter Varying (LPV) MPC. Using a support vector machine-based linear parameter varying model of the engine performance and emissions, a model predictive controller is implemented for a 4.5 Cummins diesel engine. This online optimized MPC solution offers advantages in minimizing the \nox~emissions and fuel consumption compared to the baseline feedforward production controller. To reduce the computational cost of this MPC, a deep learning scheme is designed to mimic the behavior of the developed controller. The performance in reducing NOx emissions at a constant load by the imitative controller is similar to that of the online optimized MPC compared to the Cummins production controller. In addition, the imitative controller requires 50 times less computation time compared to that of the online MPC optimization.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here