Machine Learning Assisted Adjustment Boosts Inferential Efficiency of Randomized Controlled Trials

5 Mar 2024  ·  Han Yu, Alan D. Hutson ·

In this work, we proposed a novel inferential procedure assisted by machine learning based adjustment for randomized control trials. The method was developed under the Rosenbaum's framework of exact tests in randomized experiments with covariate adjustments. Through extensive simulation experiments, we showed the proposed method can robustly control the type I error and can boost the inference efficiency for a randomized controlled trial (RCT). This advantage was further demonstrated in a real world example. The simplicity and robustness of the proposed method makes it a competitive candidate as a routine inference procedure for RCTs, especially when the number of baseline covariates is large, and when nonlinear association or interaction among covariates is expected. Its application may remarkably reduce the required sample size and cost of RCTs, such as phase III clinical trials.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here