Low-Precision Mixed-Computation Models for Inference on Edge

3 Dec 2023  ·  Seyedarmin Azizi, Mahdi Nazemi, Mehdi Kamal, Massoud Pedram ·

This paper presents a mixed-computation neural network processing approach for edge applications that incorporates low-precision (low-width) Posit and low-precision fixed point (FixP) number systems. This mixed-computation approach employs 4-bit Posit (Posit4), which has higher precision around zero, for representing weights with high sensitivity, while it uses 4-bit FixP (FixP4) for representing other weights. A heuristic for analyzing the importance and the quantization error of the weights is presented to assign the proper number system to different weights. Additionally, a gradient approximation for Posit representation is introduced to improve the quality of weight updates in the backpropagation process. Due to the high energy consumption of the fully Posit-based computations, neural network operations are carried out in FixP or Posit/FixP. An efficient hardware implementation of a MAC operation with a first Posit operand and FixP for a second operand and accumulator is presented. The efficacy of the proposed low-precision mixed-computation approach is extensively assessed on vision and language models. The results show that, on average, the accuracy of the mixed-computation is about 1.5% higher than that of FixP with a cost of 0.19% energy overhead.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here