Long Duration Battery Sizing, Siting, and Operation Under Wildfire Risk Using Progressive Hedging

18 Apr 2024  ·  Ryan Piansky, Georgia Stinchfield, Alyssa Kody, Daniel K. Molzahn, Jean-Paul Watson ·

Battery sizing and siting problems are computationally challenging due to the need to make long-term planning decisions that are cognizant of short-term operational decisions. This paper considers sizing, siting, and operating batteries in a power grid to maximize their benefits, including price arbitrage and load shed mitigation, during both normal operations and periods with high wildfire ignition risk. We formulate a multi-scenario optimization problem for long duration battery storage while considering the possibility of load shedding during Public Safety Power Shutoff (PSPS) events that de-energize lines to mitigate severe wildfire ignition risk. To enable a computationally scalable solution of this problem with many scenarios of wildfire risk and power injection variability, we develop a customized temporal decomposition method based on a progressive hedging framework. Extending traditional progressive hedging techniques, we consider coupling in both placement variables across all scenarios and state-of-charge variables at temporal boundaries. This enforces consistency across scenarios while enabling parallel computations despite both spatial and temporal coupling. The proposed decomposition facilitates efficient and scalable modeling of a full year of hourly operational decisions to inform the sizing and siting of batteries. With this decomposition, we model a year of hourly operational decisions to inform optimal battery placement for a 240-bus WECC model in under 70 minutes of wall-clock time.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here