Learning Large-Scale Poisson DAG Models based on OverDispersion Scoring

NeurIPS 2015  ·  Gunwoong Park, Garvesh Raskutti ·

In this paper, we address the question of identifiability and learning algorithms for large-scale Poisson Directed Acyclic Graphical (DAG) models. We define general Poisson DAG models as models where each node is a Poisson random variable with rate parameter depending on the values of the parents in the underlying DAG. First, we prove that Poisson DAG models are identifiable from observational data, and present a polynomial-time algorithm that learns the Poisson DAG model under suitable regularity conditions. The main idea behind our algorithm is based on overdispersion, in that variables that are conditionally Poisson are overdispersed relative to variables that are marginally Poisson. Our algorithms exploits overdispersion along with methods for learning sparse Poisson undirected graphical models for faster computation. We provide both theoretical guarantees and simulation results for both small and large-scale DAGs.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here