Learning Human Motion from Monocular Videos via Cross-Modal Manifold Alignment

15 Apr 2024  ·  Shuaiying Hou, Hongyu Tao, Junheng Fang, Changqing Zou, Hujun Bao, Weiwei Xu ·

Learning 3D human motion from 2D inputs is a fundamental task in the realms of computer vision and computer graphics. Many previous methods grapple with this inherently ambiguous task by introducing motion priors into the learning process. However, these approaches face difficulties in defining the complete configurations of such priors or training a robust model. In this paper, we present the Video-to-Motion Generator (VTM), which leverages motion priors through cross-modal latent feature space alignment between 3D human motion and 2D inputs, namely videos and 2D keypoints. To reduce the complexity of modeling motion priors, we model the motion data separately for the upper and lower body parts. Additionally, we align the motion data with a scale-invariant virtual skeleton to mitigate the interference of human skeleton variations to the motion priors. Evaluated on AIST++, the VTM showcases state-of-the-art performance in reconstructing 3D human motion from monocular videos. Notably, our VTM exhibits the capabilities for generalization to unseen view angles and in-the-wild videos.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods