Paper

Learning from Binary Labels with Instance-Dependent Corruption

Suppose we have a sample of instances paired with binary labels corrupted by arbitrary instance- and label-dependent noise. With sufficiently many such samples, can we optimally classify and rank instances with respect to the noise-free distribution? We provide a theoretical analysis of this question, with three main contributions. First, we prove that for instance-dependent noise, any algorithm that is consistent for classification on the noisy distribution is also consistent on the clean distribution. Second, we prove that for a broad class of instance- and label-dependent noise, a similar consistency result holds for the area under the ROC curve. Third, for the latter noise model, when the noise-free class-probability function belongs to the generalised linear model family, we show that the Isotron can efficiently and provably learn from the corrupted sample.

Results in Papers With Code
(↓ scroll down to see all results)