Learning Energy Conserving Dynamics Efficiently with Hamiltonian Gaussian Processes

3 Mar 2023  ·  Magnus Ross, Markus Heinonen ·

Hamiltonian mechanics is one of the cornerstones of natural sciences. Recently there has been significant interest in learning Hamiltonian systems in a free-form way directly from trajectory data. Previous methods have tackled the problem of learning from many short, low-noise trajectories, but learning from a small number of long, noisy trajectories, whilst accounting for model uncertainty has not been addressed. In this work, we present a Gaussian process model for Hamiltonian systems with efficient decoupled parameterisation, and introduce an energy-conserving shooting method that allows robust inference from both short and long trajectories. We demonstrate the method's success in learning Hamiltonian systems in various data settings.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods