Quantum Machine Learning for Distributed Quantum Protocols with Local Operations and Noisy Classical Communications

22 Jul 2022  ·  Hari Hara Suthan Chittoor, Osvaldo Simeone ·

Distributed quantum information processing protocols such as quantum entanglement distillation and quantum state discrimination rely on local operations and classical communications (LOCC). Existing LOCC-based protocols typically assume the availability of ideal, noiseless, communication channels. In this paper, we study the case in which classical communication takes place over noisy channels, and we propose to address the design of LOCC protocols in this setting via the use of quantum machine learning tools. We specifically focus on the important tasks of quantum entanglement distillation and quantum state discrimination, and implement local processing through parameterized quantum circuits (PQCs) that are optimized to maximize the average fidelity and average success probability in the respective tasks, while accounting for communication errors. The introduced approach, Noise Aware-LOCCNet (NA-LOCCNet), is shown to have significant advantages over existing protocols designed for noiseless communications.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here