Learning definable hypotheses on trees

24 Sep 2019  ·  Emilie Grienenberger, Martin Ritzert ·

We study the problem of learning properties of nodes in tree structures. Those properties are specified by logical formulas, such as formulas from first-order or monadic second-order logic. We think of the tree as a database encoding a large dataset and therefore aim for learning algorithms which depend at most sublinearly on the size of the tree. We present a learning algorithm for quantifier-free formulas where the running time only depends polynomially on the number of training examples, but not on the size of the background structure. By a previous result on strings we know that for general first-order or monadic second-order (MSO) formulas a sublinear running time cannot be achieved. However, we show that by building an index on the tree in a linear time preprocessing phase, we can achieve a learning algorithm for MSO formulas with a logarithmic learning phase.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here