Learning Curves for Noisy Heterogeneous Feature-Subsampled Ridge Ensembles

NeurIPS 2023  ·  Benjamin S. Ruben, Cengiz Pehlevan ·

Feature bagging is a well-established ensembling method which aims to reduce prediction variance by combining predictions of many estimators trained on subsets or projections of features. Here, we develop a theory of feature-bagging in noisy least-squares ridge ensembles and simplify the resulting learning curves in the special case of equicorrelated data. Using analytical learning curves, we demonstrate that subsampling shifts the double-descent peak of a linear predictor. This leads us to introduce heterogeneous feature ensembling, with estimators built on varying numbers of feature dimensions, as a computationally efficient method to mitigate double-descent. Then, we compare the performance of a feature-subsampling ensemble to a single linear predictor, describing a trade-off between noise amplification due to subsampling and noise reduction due to ensembling. Our qualitative insights carry over to linear classifiers applied to image classification tasks with realistic datasets constructed using a state-of-the-art deep learning feature map.

PDF Abstract NeurIPS 2023 PDF NeurIPS 2023 Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here