Learning and generalization of one-hidden-layer neural networks, going beyond standard Gaussian data

7 Jul 2022  ·  Hongkang Li, Shuai Zhang, Meng Wang ·

This paper analyzes the convergence and generalization of training a one-hidden-layer neural network when the input features follow the Gaussian mixture model consisting of a finite number of Gaussian distributions. Assuming the labels are generated from a teacher model with an unknown ground truth weight, the learning problem is to estimate the underlying teacher model by minimizing a non-convex risk function over a student neural network. With a finite number of training samples, referred to the sample complexity, the iterations are proved to converge linearly to a critical point with guaranteed generalization error. In addition, for the first time, this paper characterizes the impact of the input distributions on the sample complexity and the learning rate.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here