Learning Agent Interactions from Density Evolution in 3D Regions With Obstacles

18 May 2023  ·  Amoolya Tirumalai, Christos N. Mavridis, John S. Baras ·

In this work, we study the inverse problem of identifying complex flocking dynamics in a domain cluttered with obstacles. We get inspiration from animal flocks moving in complex ways with capabilities far beyond what current robots can do. Owing to the difficulty of observing and recovering the trajectories of the agents, we focus on the dynamics of their probability densities, which are governed by partial differential equations (PDEs), namely compressible Euler equations subject to non-local forces. We formulate the inverse problem of learning interactions as a PDE-constrained optimization problem of minimizing the squared Hellinger distance between the histogram of the flock and the distribution associated to our PDEs. The numerical methods used to efficiently solve the PDE-constrained optimization problem are described. Realistic flocking data are simulated using the Boids model of flocking agents, which differs in nature from the reconstruction models used in our PDEs. Our analysis and simulated experiments show that the behavior of cohesive flocks can be recovered accurately with approximate PDE solutions.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here