Learning a Sparse Representation of Barron Functions with the Inverse Scale Space Flow

5 Dec 2023  ·  Tjeerd Jan Heeringa, Tim Roith, Christoph Brune, Martin Burger ·

This paper presents a method for finding a sparse representation of Barron functions. Specifically, given an $L^2$ function $f$, the inverse scale space flow is used to find a sparse measure $\mu$ minimising the $L^2$ loss between the Barron function associated to the measure $\mu$ and the function $f$. The convergence properties of this method are analysed in an ideal setting and in the cases of measurement noise and sampling bias. In an ideal setting the objective decreases strictly monotone in time to a minimizer with $\mathcal{O}(1/t)$, and in the case of measurement noise or sampling bias the optimum is achieved up to a multiplicative or additive constant. This convergence is preserved on discretization of the parameter space, and the minimizers on increasingly fine discretizations converge to the optimum on the full parameter space.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here