Large-scale Entity Alignment via Knowledge Graph Merging, Partitioning and Embedding

23 Aug 2022  ·  Kexuan Xin, Zequn Sun, Wen Hua, Wei Hu, Jianfeng Qu, Xiaofang Zhou ·

Entity alignment is a crucial task in knowledge graph fusion. However, most entity alignment approaches have the scalability problem. Recent methods address this issue by dividing large KGs into small blocks for embedding and alignment learning in each. However, such a partitioning and learning process results in an excessive loss of structure and alignment. Therefore, in this work, we propose a scalable GNN-based entity alignment approach to reduce the structure and alignment loss from three perspectives. First, we propose a centrality-based subgraph generation algorithm to recall some landmark entities serving as the bridges between different subgraphs. Second, we introduce self-supervised entity reconstruction to recover entity representations from incomplete neighborhood subgraphs, and design cross-subgraph negative sampling to incorporate entities from other subgraphs in alignment learning. Third, during the inference process, we merge the embeddings of subgraphs to make a single space for alignment search. Experimental results on the benchmark OpenEA dataset and the proposed large DBpedia1M dataset verify the effectiveness of our approach.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here