Introduction to Machine Learning for the Sciences

8 Feb 2021  ·  Titus Neupert, Mark H Fischer, Eliska Greplova, Kenny Choo, M. Michael Denner ·

This is an introductory machine-learning course specifically developed with STEM students in mind. Our goal is to provide the interested reader with the basics to employ machine learning in their own projects and to familiarize themself with the terminology as a foundation for further reading of the relevant literature. In these lecture notes, we discuss supervised, unsupervised, and reinforcement learning. The notes start with an exposition of machine learning methods without neural networks, such as principle component analysis, t-SNE, clustering, as well as linear regression and linear classifiers. We continue with an introduction to both basic and advanced neural-network structures such as dense feed-forward and conventional neural networks, recurrent neural networks, restricted Boltzmann machines, (variational) autoencoders, generative adversarial networks. Questions of interpretability are discussed for latent-space representations and using the examples of dreaming and adversarial attacks. The final section is dedicated to reinforcement learning, where we introduce basic notions of value functions and policy learning.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here