On MPC without terminal conditions for dynamic non-holonomic robots

18 Feb 2021  ·  Franz Rußwurm, Willem Esterhuizen, Karl Worthmann, Stefan Streif ·

We consider an input-constrained differential-drive robot with actuator dynamics. For this system, we establish asymptotic stability of the origin on arbitrary compact, convex sets using Model Predictive Control (MPC) without stabilizing terminal conditions despite the presence of state constraints and actuator dynamics. We note that the problem without those two additional ingredients was essentially solved beforehand, despite the fact that the linearization is not stabilizable. We propose an approach successfully solving the task at hand by combining the theory of barriers to characterize the viability kernel and an MPC framework based on so-called cost controllability. Moreover, we present a numerical case study to derive quantitative bounds on the required length of the prediction horizon. To this end, we investigate the boundary of the viability kernel and a neighbourhood of the origin, i.e. the most interesting areas.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here