Infinite and Bi-infinite Words with Decidable Monadic Theories

17 Aug 2018  ·  Kuske Dietrich, Liu Jiamou, Moskvina Anastasia ·

We study word structures of the form $(D,<,P)$ where $D$ is either $\mathbb{N}$ or $\mathbb{Z}$, $<$ is the natural linear ordering on $D$ and $P\subseteq D$ is a predicate on $D$. In particular we show: (a) The set of recursive $\omega$-words with decidable monadic second order theories is $\Sigma_3$-complete... (b) Known characterisations of the $\omega$-words with decidable monadic second order theories are transfered to the corresponding question for bi-infinite words. (c) We show that such "tame" predicates $P$ exist in every Turing degree. (d) We determine, for $P\subseteq\mathbb{Z}$, the number of predicates $Q\subseteq\mathbb{Z}$ such that $(\mathbb{Z},\le,P)$ and $(\mathbb{Z},\le,Q)$ are indistinguishable. Through these results we demonstrate similarities and differences between logical properties of infinite and bi-infinite words. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Logic in Computer Science Formal Languages and Automata Theory

Datasets


  Add Datasets introduced or used in this paper