Inferring latent structures via information inequalities

8 Jul 2014  ·  R. Chaves, L. Luft, T. O. Maciel, D. Gross, D. Janzing, B. Schölkopf ·

One of the goals of probabilistic inference is to decide whether an empirically observed distribution is compatible with a candidate Bayesian network. However, Bayesian networks with hidden variables give rise to highly non-trivial constraints on the observed distribution. Here, we propose an information-theoretic approach, based on the insight that conditions on entropies of Bayesian networks take the form of simple linear inequalities. We describe an algorithm for deriving entropic tests for latent structures. The well-known conditional independence tests appear as a special case. While the approach applies for generic Bayesian networks, we presently adopt the causal view, and show the versatility of the framework by treating several relevant problems from that domain: detecting common ancestors, quantifying the strength of causal influence, and inferring the direction of causation from two-variable marginals.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here