Inexact Alternating Optimization for Phase Retrieval In the Presence of Outliers

24 Jul 2017  ·  Qian Cheng, Fu Xiao, Sidiropoulos Nicholas D., Huang Lei, Xie Junhao ·

Phase retrieval has been mainly considered in the presence of Gaussian noise. However, the performance of the algorithms proposed under the Gaussian noise model severely degrades when grossly corrupted data, i.e., outliers, exist... This paper investigates techniques for phase retrieval in the presence of heavy-tailed noise -- which is considered a better model for situations where outliers exist. An $\ell_p$-norm ($0<p<2$) based estimator is proposed for fending against such noise, and two-block inexact alternating optimization is proposed as the algorithmic framework to tackle the resulting optimization problem. Two specific algorithms are devised by exploring different local approximations within this framework. Interestingly, the core conditional minimization steps can be interpreted as iteratively reweighted least squares and gradient descent. Convergence properties of the algorithms are discussed, and the Cram\'er-Rao bound (CRB) is derived. Simulations demonstrate that the proposed algorithms approach the CRB and outperform state-of-the-art algorithms in heavy-tailed noise. read more

PDF Abstract
No code implementations yet. Submit your code now

Categories


Information Theory Information Theory

Datasets


  Add Datasets introduced or used in this paper