In-phase and Quadrature Chirp Spread Spectrum for IoT Communications

22 Sep 2020  ·  Ivo Bizon Franco de Almeida, Marwa Chafii, Ahmad Nimr, Gerhard Fettweis ·

This paper describes a coherent chirp spread spectrum (CSS) technique based on the Long-Range (LoRa) physical layer (PHY) framework. LoRa PHY employs CSS on top of a variant of frequency shift keying (FSK), and non-coherent detection is employed at the receiver for obtaining the transmitted data symbols. In this paper, we propose a scheme that encodes information bits on both in-phase and quadrature components of the chirp signal, and rather employs a coherent detector at the receiver. Hence, channel equalization is required for compensating the channel induced phase rotation on the transmit signal. Moreover, a simple channel estimation technique exploits the LoRa reference sequences used for synchronization to obtain the complex channel coefficient used in the equalizer. Performance evaluation using numerical simulation shows that the proposed scheme achieves approximately 1 dB gain in terms of energy efficiency, and it doubles the spectral efficiency when compared to the conventional LoRa PHY scheme. This is due to the fact that the coherent receiver is able to exploit the orthogonality between in-phase and quadrature components of the transmit signal.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here