Improved Projection-free Online Continuous Submodular Maximization

29 May 2023  ·  Yucheng Liao, Yuanyu Wan, Chang Yao, Mingli Song ·

We investigate the problem of online learning with monotone and continuous DR-submodular reward functions, which has received great attention recently. To efficiently handle this problem, especially in the case with complicated decision sets, previous studies have proposed an efficient projection-free algorithm called Mono-Frank-Wolfe (Mono-FW) using $O(T)$ gradient evaluations and linear optimization steps in total. However, it only attains a $(1-1/e)$-regret bound of $O(T^{4/5})$. In this paper, we propose an improved projection-free algorithm, namely POBGA, which reduces the regret bound to $O(T^{3/4})$ while keeping the same computational complexity as Mono-FW. Instead of modifying Mono-FW, our key idea is to make a novel combination of a projection-based algorithm called online boosting gradient ascent, an infeasible projection technique, and a blocking technique. Furthermore, we consider the decentralized setting and develop a variant of POBGA, which not only reduces the current best regret bound of efficient projection-free algorithms for this setting from $O(T^{4/5})$ to $O(T^{3/4})$, but also reduces the total communication complexity from $O(T)$ to $O(\sqrt{T})$.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here