Hyperspectral Image Reconstruction Using a Deep Spatial-Spectral Prior

Regularization is a fundamental technique to solve an ill-posed optimization problem robustly and is essential to reconstruct compressive hyperspectral images. Various hand-crafted priors have been employed as a regularizer but are often insufficient to handle the wide variety of spectra of natural hyperspectral images, resulting in poor reconstruction quality. Moreover, the prior-regularized optimization requires manual tweaking of its weight parameters to achieve a balance between the spatial and spectral fidelity of result images. In this paper, we present a novel hyperspectral image reconstruction algorithm that substitutes the traditional hand-crafted prior with a data-driven prior, based on an optimization-inspired network. Our method consists of two main parts: First, we learn a novel data-driven prior that regularizes the optimization problem with a goal to boost the spatial-spectral fidelity. Our data-driven prior learns both local coherence and dynamic characteristics of natural hyperspectral images. Second, we combine our regularizer with an optimization-inspired network to overcome the heavy computation problem in the traditional iterative optimization methods. We learn the complete parameters in the network through end-to-end training, enabling robust performance with high accuracy. Extensive simulation and hardware experiments validate the superior performance of our method over the state-of-the-art methods.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here