Hyperspectral Image Compression Using Implicit Neural Representation

8 Feb 2023  ·  Shima Rezasoltani, Faisal Z. Qureshi ·

Hyperspectral images, which record the electromagnetic spectrum for a pixel in the image of a scene, often store hundreds of channels per pixel and contain an order of magnitude more information than a typical similarly-sized color image. Consequently, concomitant with the decreasing cost of capturing these images, there is a need to develop efficient techniques for storing, transmitting, and analyzing hyperspectral images. This paper develops a method for hyperspectral image compression using implicit neural representations where a multilayer perceptron network $\Phi_\theta$ with sinusoidal activation functions ``learns'' to map pixel locations to pixel intensities for a given hyperspectral image $I$. $\Phi_\theta$ thus acts as a compressed encoding of this image. The original image is reconstructed by evaluating $\Phi_\theta$ at each pixel location. We have evaluated our method on four benchmarks -- Indian Pines, Cuprite, Pavia University, and Jasper Ridge -- and we show the proposed method achieves better compression than JPEG, JPEG2000, and PCA-DCT at low bitrates.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here