HyperJump: Accelerating HyperBand via Risk Modelling

5 Aug 2021  ·  Pedro Mendes, Maria Casimiro, Paolo Romano, David Garlan ·

In the literature on hyper-parameter tuning, a number of recent solutions rely on low-fidelity observations (e.g., training with sub-sampled datasets) in order to efficiently identify promising configurations to be then tested via high-fidelity observations (e.g., using the full dataset). Among these, HyperBand is arguably one of the most popular solutions, due to its efficiency and theoretically provable robustness. In this work, we introduce HyperJump, a new approach that builds on HyperBand's robust search strategy and complements it with novel model-based risk analysis techniques that accelerate the search by skipping the evaluation of low risk configurations, i.e., configurations that are likely to be eventually discarded by HyperBand. We evaluate HyperJump on a suite of hyper-parameter optimization problems and show that it provides over one-order of magnitude speed-ups, both in sequential and parallel deployments, on a variety of deep-learning, kernel-based learning, and neural architectural search problems when compared to HyperBand and to several state-of-the-art optimizers.

PDF Abstract

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here