Hyper-Laplacian Regularized Concept Factorization in Low-rank Tensor Space for Multi-view Clustering

22 Apr 2023  ·  Zixiao Yu, Lele Fu, Zhiling Cai, Zhoumin Lu ·

Tensor-oriented multi-view subspace clustering has achieved significant strides in assessing high-order correlations and improving clustering analysis of multi-view data. Nevertheless, most of existing investigations are typically hampered by the two flaws. First, self-representation based tensor subspace learning usually induces high time and space complexity, and is limited in perceiving nonlinear local structure in the embedding space. Second, the tensor singular value decomposition (t-SVD) model redistributes each singular value equally without considering the diverse importance among them. To well cope with the issues, we propose a hyper-Laplacian regularized concept factorization (HLRCF) in low-rank tensor space for multi-view clustering. Specifically, we adopt the concept factorization to explore the latent cluster-wise representation of each view. Further, the hypergraph Laplacian regularization endows the model with the capability of extracting the nonlinear local structures in the latent space. Considering that different tensor singular values associate structural information with unequal importance, we develop a self-weighted tensor Schatten p-norm to constrain the tensor comprised of all cluster-wise representations. Notably, the tensor with smaller size greatly decreases the time and space complexity in the low-rank optimization. Finally, experimental results on eight benchmark datasets exhibit that HLRCF outperforms other multi-view methods, showingcasing its superior performance.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here