HyPar-Flow: Exploiting MPI and Keras for Scalable Hybrid-Parallel DNN Training using TensorFlow

12 Nov 2019  ·  Ammar Ahmad Awan, Arpan Jain, Quentin Anthony, Hari Subramoni, Dhabaleswar K. Panda ·

To reduce training time of large-scale DNNs, scientists have started to explore parallelization strategies like data-parallelism, model-parallelism, and hybrid-parallelism. While data-parallelism has been extensively studied and developed, several problems exist in realizing model-parallelism and hybrid-parallelism efficiently. Four major problems we focus on are: 1) defining a notion of a distributed model across processes, 2) implementing forward/back-propagation across process boundaries that requires explicit communication, 3) obtaining parallel speedup on an inherently sequential task, and 4) achieving scalability without losing out on a model's accuracy. To address these problems, we create HyPar-Flow --- a model-size/-type agnostic, scalable, practical, and user-transparent system for hybrid-parallel training by exploiting MPI, Keras, and TensorFlow. HyPar-Flow provides a single API that can be used to perform data, model, and hybrid parallel training of any Keras model at scale. We create an internal distributed representation of the user-provided Keras model, utilize TF's Eager execution features for distributed forward/back-propagation across processes, exploit pipelining to improve performance and leverage efficient MPI primitives for scalable communication. Between model partitions, we use send and recv to exchange layer-data/partial-errors while allreduce is used to accumulate/average gradients across model replicas. Beyond the design and implementation of HyPar-Flow, we also provide comprehensive correctness and performance results on three state-of-the-art HPC systems including TACC Frontera (#5 on Top500.org). For ResNet-1001, an ultra-deep model, HyPar-Flow provides: 1) Up to 1.6x speedup over Horovod-based data-parallel training, 2) 110x speedup over single-node on 128 Stampede2 nodes, and 3) 481x speedup over single-node on 512 Frontera nodes.

PDF Abstract
No code implementations yet. Submit your code now

Tasks


Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here