How to learn a graph from smooth signals

11 Jan 2016  ·  Vassilis Kalofolias ·

We propose a framework that learns the graph structure underlying a set of smooth signals. Given $X\in\mathbb{R}^{m\times n}$ whose rows reside on the vertices of an unknown graph, we learn the edge weights $w\in\mathbb{R}_+^{m(m-1)/2}$ under the smoothness assumption that $\text{tr}{X^\top LX}$ is small. We show that the problem is a weighted $\ell$-1 minimization that leads to naturally sparse solutions. We point out how known graph learning or construction techniques fall within our framework and propose a new model that performs better than the state of the art in many settings. We present efficient, scalable primal-dual based algorithms for both our model and the previous state of the art, and evaluate their performance on artificial and real data.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here