Metabolic fluxes and value production

20 Apr 2014  ·  Wolfram Liebermeister ·

Metabolic fluxes in cells are governed by physical, physiological, and economic principles. Here I assume an optimal allocation of enzyme resources and postulate a general principle for metabolism: each enzyme must convert less valuable into more valuable metabolites to justify its own cost. The "values", called economic potentials, describe the individual contributions of metabolites to cell fitness. Local value production implies that the cost of an enzyme must be balanced by a benefit, given by the economic potential difference the catalysed reaction multiplied by the flux. Flux profiles that satisfy this principle - i.e. for which consistent potentials can be found - are called economical. Economical fluxes must lead from lower to higher economic potentials, so certain flux cycles are incompatible with any choice of economic potentials and can be excluded. To obtain economical flux profiles, non-beneficial local patterns, called futile motifs, can be systematically removed from a given flux distribution. The principle of local value production resembles thermodynamic principles and complements them in models. Here I describe a modelling framework called Value Balance Analysis (VBA) that uses the two principles and yields the same solution as enzyme cost minimisation (in kinetic models) and flux cost minimisation (in FBA). Given an economical flux distribution, kinetic models in enzyme-optimal states and with these fluxes can be constructed systematically. VBA justifies the principle of minimal fluxes and the exclusion of futile cycles, predicts enzymes that could be plausible targets for regulation, provides criteria for the usage of enzymes and pathways, and explains the choice between high-yield and low-yield flux modes.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here