Holographic DC Conductivity for Backreacted NLED in Massive Gravity

4 Jan 2021  ·  Shihao Bi, Jun Tao ·

In this work a holographic model with the charge current dual to a general nonlinear electrodynamics (NLED) is discussed in the framework of massive gravity. Massive graviton can breaks the diffeomorphism invariance in the bulk and generates momentum dissipation in the dual boundary theory. The expression of DC conductivities in a finite magnetic field are obtained, with the backreaction of NLED field on the background geometry. General transport properties in various limits are presented, and then we turn to the three of specific NLED models: the conventional Maxwell electrodynamics, the Maxwell-Chern-Simons electrodynamics, and the Born-Infeld electrodynamics, to study the parameter-dependence of in-plane resistivity. Two mechanisms leading to the Mott-insulating behaviors and negative magneto-resistivity are revealed at zero temperature, and the role played by the massive gravity coupling parameters are discussed.

PDF Abstract
No code implementations yet. Submit your code now

Categories


High Energy Physics - Theory Strongly Correlated Electrons General Relativity and Quantum Cosmology