Paper

HIH: Towards More Accurate Face Alignment via Heatmap in Heatmap

Heatmap-based regression overcomes the lack of spatial and contextual information of direct coordinate regression, and has revolutionized the task of face alignment. Yet it suffers from quantization errors caused by neglecting subpixel coordinates in image resizing and network downsampling. In this paper, we first quantitatively analyze the quantization error on benchmarks, which accounts for more than 1/3 of the whole prediction errors for state-of-the-art methods. To tackle this problem, we propose a novel Heatmap In Heatmap(HIH) representation and a coordinate soft-classification (CSC) method, which are seamlessly integrated into the classic hourglass network. The HIH representation utilizes nested heatmaps to jointly represent the coordinate label: one heatmap called integer heatmap stands for the integer coordinate, and the other heatmap named decimal heatmap represents the subpixel coordinate. The range of a decimal heatmap makes up one pixel in the corresponding integer heatmap. Besides, we transfer the offset regression problem to an interval classification task, and CSC regards the confidence of the pixel as the probability of the interval. Meanwhile, CSC applying the distribution loss leverage the soft labels generated from the Gaussian distribution function to guide the offset heatmap training, which makes it easier to learn the distribution of coordinate offsets. Extensive experiments on challenging benchmark datasets demonstrate that our HIH can achieve state-of-the-art results. In particular, our HIH reaches 4.08 NME (Normalized Mean Error) on WFLW, and 3.21 on COFW, which exceeds previous methods by a significant margin.

Results in Papers With Code
(↓ scroll down to see all results)