Wasserstein barycenters can be computed in polynomial time in fixed dimension

14 Jun 2020  ·  Jason M. Altschuler, Enric Boix-Adsera ·

Computing Wasserstein barycenters is a fundamental geometric problem with widespread applications in machine learning, statistics, and computer graphics. However, it is unknown whether Wasserstein barycenters can be computed in polynomial time, either exactly or to high precision (i.e., with $\textrm{polylog}(1/\varepsilon)$ runtime dependence). This paper answers these questions in the affirmative for any fixed dimension. Our approach is to solve an exponential-size linear programming formulation by efficiently implementing the corresponding separation oracle using techniques from computational geometry.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here