Full Attitude Intelligent Controller Design of a Heliquad under Complete Failure of an Actuator

15 Nov 2020  ·  Eeshan Kulkarni, Suresh Sundaram ·

In this paper, we design a reliable Heliquad and develop an intelligent controller to handle one actuators complete failure. Heliquad is a multi-copter similar to Quadcopter, with four actuators diagonally symmetric from the center. Each actuator has two control inputs; the first input changes the propeller blades collective pitch (also called variable pitch), and the other input changes the rotation speed. For reliable operation and high torque characteristic requirement for yaw control, a cambered airfoil is used to design propeller blades. A neural network-based control allocation is designed to provide complete control authority even under a complete loss of one actuator. Nonlinear quaternion based outer loop position control, with proportional-derivative inner loop for attitude control and neural network-based control allocation is used in controller design. The proposed controller and Heliquad designs performance is evaluated using a software-in-loop simulation to track the position reference command under failure. The results clearly indicate that the Heliquad with an intelligent controller provides necessary tracking performance even under a complete loss of one actuator.

PDF Abstract
No code implementations yet. Submit your code now

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods


No methods listed for this paper. Add relevant methods here