FSDNet-An efficient fire detection network for complex scenarios based on YOLOv3 and DenseNet

15 Apr 2023  ·  Li Zhu, Jiahui Xiong, Wenxian Wu, Hongyu Yu ·

Fire is one of the common disasters in daily life. To achieve fast and accurate detection of fires, this paper proposes a detection network called FSDNet (Fire Smoke Detection Network), which consists of a feature extraction module, a fire classification module, and a fire detection module. Firstly, a dense connection structure is introduced in the basic feature extraction module to enhance the feature extraction ability of the backbone network and alleviate the gradient disappearance problem. Secondly, a spatial pyramid pooling structure is introduced in the fire detection module, and the Mosaic data augmentation method and CIoU loss function are used in the training process to comprehensively improve the flame feature extraction ability. Finally, in view of the shortcomings of public fire datasets, a fire dataset called MS-FS (Multi-scene Fire And Smoke) containing 11938 fire images was created through data collection, screening, and object annotation. To prove the effectiveness of the proposed method, the accuracy of the method was evaluated on two benchmark fire datasets and MS-FS. The experimental results show that the accuracy of FSDNet on the two benchmark datasets is 99.82% and 91.15%, respectively, and the average precision on MS-FS is 86.80%, which is better than the mainstream fire detection methods.

PDF Abstract

Datasets


  Add Datasets introduced or used in this paper

Results from the Paper


  Submit results from this paper to get state-of-the-art GitHub badges and help the community compare results to other papers.

Methods